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NOTE

Analysis of a Fourth-Order Compact Scheme for
Convection–Diffusion1

1. INTRODUCTION tions of x and y. Here we shall assume constant p and
q in order to greatly simplify the discussion. As we are

In 1984 Gupta et al. [3] introduced a compact fourth- interested in the convection-dominated case, which would
order finite-difference convection–diffusion operator with imply very large p and q in (1), we rescale this equation as
some very favorable properties. In particular, this scheme
does not seem to suffer excessively from spurious oscilla-

p 5 «p, q 5 «q, f 5 «f ,tory behavior, and it converges with standard methods
such as Gauss Seidel or SOR (hence, multigrid) regardless
of the diffusion [7]. This scheme has been rederived, devel-

where « 5 1/max(upu, uqu). Multiplying (1) through by «
oped (including some variations), and applied in both

we obtain
convection–diffusion and Navier–Stokes equations by sev-
eral authors [1, 2, 4–6]. Accurate solutions to high Reyn-
olds-number flow problems at relatively coarse resolutions «(uxx 1 uyy) 1 pux 1 quy 5 f (2)
have been reported (e.g., [1, 2]). These solutions were often
compared to those obtained by lower order discretizations,

in V, with the same boundary condition as in (1). Sincesuch as second-order central differences and first-order
the convection operator is a (scaled) derivative in the char-upstream discretizations. The latter, it was stated, achieved
acteristic direction, which we denote by j, we denote thisfar less accurate results due to the artificial viscosity, which
operator bythe compact scheme did not include [3].

We show here that, while the compact scheme indeed
does not suffer from a cross-stream artificial viscosity (as

Dj 5 px 1 qy .
does the first-order upstream scheme when the characteris-
tic direction is not aligned with the grid), it does include
a streamwise artificial viscosity that is inversely propor- Suppose that we discretize (2) on a uniform grid of
tional to the natural viscosity. This term is not always meshsize h. For constant p and q we can write the discre-
benign. tized problem using the compact fourth-order scheme of

[3] as
2. THE EQUATION AND ITS DISCRETIZATION

To be consistent with [3] we write the convection– F«Dh 1 Dh
j 1

h2

12«
Dh

jjG uh 5 FIh 1
h2

12
D̃h 1

h2

12«
D̃h

jG f h,diffusion equation with Dirichlet boundary conditions in
two dimensions as

(3)
uxx 1 uyy 1 pux 1 quy 5 f , (x, y) [ V,

u(x, y) 5 g (x, y) [ V.
(1)

where h superscripts denote discrete values and operators.
Here, I h is the grid-h identity. The rest of the discreteHere, u is the solution and p, q, and f are generally func-
operators are defined by the following stencils. We also
write the differential operators they approximate and cor-1 Supported by the United States–Israel Binational Science Foundation
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smooth solution to improve by a factor 16 when we halve
the meshsize, say. But when « P h (cell-Reynolds number

Dh 5
1

6h2 3
1 4 1

4 220 4

1 4 1
45 D 1

h2

12
D2 1 O(h4), approximately equal to one), the right-hand side is actually

O(h3), and when « P h2 it is O(h2). The scheme thus
becomes less accurate in the convection-dominated case.

Consider, moreover, the limit «/h2 ! 1. The dominant
terms in (5) then satisfy

Dh
j 5

1
12h 3

2p 1 q 4q p 1 q

24p 0 4p

2p 2 q 24q p 2 q
4

Dj(« Duh 1 Djuh 2 f h) 5 O(h2). (6)

5 Dj 1
h2

6
DDj 1 O(h4),

Now the discretization no longer approximates the convec-
tion equation but rather its streamwise derivative (with
O(h2) relative truncation error). As a result the discretiza-

Dh
jj 5

1
2h2 3

2pq 2q2 pq

2p2 24(p2 1 q2) 2p2

pq 2q2 2pq
4 (4)

tion becomes insensitive to f h that is constant along the
characteristic direction, though the original equation is not.
Furthermore, the main term in the approximated equation

5 Djj 1 O(h2), is now a streamwise second derivative instead of a first
derivative. Hence, both ‘‘inflow’’ and ‘‘outflow’’ boundary
conditions strongly affect the solution throughout the do-
main, instead of there being an O(«) boundary layer. InD̃h 5

1
h2 3

0 1 0

1 24 1

0 1 0
45 D 1 O(h2),

effect, the operator has become fully viscous in the stream-
wise direction.

In intermediate regimes the approximated equation is
some combination of the convection equation and its
streamwise derivative. The effect of the latter becomesD̃h

j 5
1

2h 3
0 q 0

2p 0 p

0 2q 0
45 Dj 1 O(h2).

noticeable when the cell Reynolds number is approxi-
mately one, since then the streamwise viscosity term is
roughly equal to the natural viscosity. If we further reduce

Here, D is the Laplacian and Djj is the square of the convec- the viscosity « the solution will actually become more and
tion operator: more viscous in the streamwise direction. We expect the

boundary layer to be thinnest when the sum of the natural
Djj 5 p2xx 1 2pqxy 1 q2yy . viscosity and the artificial streamwise viscosity is minimal,

i.e., « 5 1221/2h.
Now, substitution of the differential operators and trunca-
tion terms of (4) into (3) produces, after some manipulation
utilizing the commutativity of D and Dj ,

TABLE I

Computed Boundary-Layer Decay Rates ComparedS1 1
h2

12
D 1

h2

12«
DjD (« Duh 1 Djuh 2 f h)

(5)
with the Exact Rate

4th Order Upstream5 O((1 1 «21)h4),
Exact

(«̃/h)(«/h)
where we have assumed differentiable extensions of uh

2.0000 2.0002 2.4623and f h to V for convenience of notation.
1.0000 1.0015 1.4426Equation (5) allows us to analyze the scheme. We as-
0.4000 0.4300 0.7982

sume smooth uh and f h. Clearly the discretization is consis- 0.3000 0.3804 0.6820
tent since, for a fixed «, uh satisfies the differential equation 0.2887 0.3797 0.6684

0.2500 0.3899 0.6213when h tends to zero. Formally, the right-hand side of (5)
0.2000 0.4427 0.5581is O(h4), consistent with the scheme’s known fourth-order
0.0400 2.0835 0.3069accuracy. But the size of this truncation term also depends 0.0040 16.912 0.1810

on «. Thus, for any fixed « we expect the accuracy of a
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3. NUMERICAL EXAMPLES

In our examples V 5 (0, 1) 3 (0, 1), and we use a grid
of 41 by 41 points, including the boundary, so that h 5
0.025. We compare solutions obtained with the fourth-
order compact scheme to those produced by a standard
first-order upstream discretization (in fact downstream,
because the viscosity here was chosen with a positive sign
for consistency with [3], but this is moot).

EXAMPLE 1. We choose the simple problem p 5 1, q 5
f 5 0, with u 5 1 at x 5 0, and u 5 0 at x 5 1. The
top and bottom boundary conditions are chosen to be
consistent with the 1D solution, i.e.,

u 5
exp(2x/«) 2 exp(21/«)

1 2 exp(21/«)
.

The small-« solution is very close to zero throughout the
domain except in an O(«) boundary layer near x 5 0,
where it decays exponentially from its boundary value of
1. Hence, we test the accuracy of the computed results by
fitting the function exp(2x/«̃) to the calculated solutions
at y 5 0.5 from x 5 0 to x 5 0.25, and comparing «̃ to «.
The results appear in Table 1 for several values of «/h.

FIG. 1. Diagonal cross-section of uh obtained with the high-orderFor «/h $ 1 the high-order scheme is very accurate. But
scheme (top) and upstream scheme (bottom). The solid line shows thejust as predicted, the least viscous solution occurs at «/h 5
exact inviscid solution. Long dashes correspond to « 5 0.01, alternating1221/2. For smaller values the boundary layer thickens
dashes to « 5 0.001, and short dashes to « 5 0.0001.

monotonically as predicted by our analysis. For example,
at « 5 1/1000 (eighth row) the solution is close to that of
« 5 1/20 (first row), because the streamwise ‘‘artificial
viscosity’’ is h2/12« 5 1/19.2). triangle. In Fig. 1 we plot the solutions along the cross-

The low-order solution’s boundary-layer thickness is not section x 5 1 2 y from the upper left to the lower right
as good as that of the high-order scheme when «/h is corner of the domain. The inviscid ‘‘sawtooth’’ exact solu-
moderate, but it is reduced monotonically as « is decreased. tion (restricted to the present grid) is shown by the solid
Of course the main weakness of the upstream discretization lines in Fig. 1. Here, it is not a priori obvious what the
is concealed in this example due to the perfect alignment optimal « will be for the high-order scheme, because the
of the characteristics with the grid and the absence of cross- cross-stream viscosity plays an important role. It turns out
stream variation. that the least damped solution is obtained at about « 5

0.001. When « is reduced further, the insensitivity of the
EXAMPLE 2. On the same domain let p 5 q 5 1, and let streamwise second derivative to f that is independent on

the streamwise coordinate leads to the expected deteriora-
tion in the solution. Note also that there is some overshoot
in the small-« results, although it does not seem to be
very severe.f 5 5

21 y . x,

0, y 5 x,

1, y , x,
For the upstream scheme this is a worst-case example

because of the maximal nonalignment and the strong ad-
verse effect of cross-stream viscosity. The results with this
scheme improve monotonically as « is reduced and with
no oscillatory behavior, as expected. But they are not aswith u ; 0 on V. Note that f is constant along characteris-

tics. Here the solution in the inviscid limit decays linearly good as the best results obtained with the high-order
scheme. Here, the use of a so-called ‘‘narrow’’ upstreamin the left-upper triangle and grows linearly the right-lower
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scheme would improve the results significantly, and more nent of f that is constant along the characteristic. However,
this matter requires further investigation.sophisticated higher-order schemes with limiters would do

still better.
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